ELSEVIER

Contents lists available at ScienceDirect

Journal of Molecular Liquids

journal homepage: www.elsevier.com/locate/molliq

Investigation of temperature dependent dielectric relaxation studies of 1,4-Butanediol/DMSO binary mixtures at the microwave frequency

V. Manjula^{a,b}, T. Vamshi Prasad^c, K. Balakrishna^a, K.C. James Raju^d, T. Vishwam^{a,*}

^a Department of Physics and Chemistry, GITAM (Deemed to be University)-Hyderabad, Rudraram, Patancheru (M), TS 502329, India

^b Department of Physics Geethaniali College of Engineering and Technology, Hyderabad, Telangana 501301, India

^c Department of Physics, Jawaharlal Nehru Technological University-Hyderabad, Hyderabad 500 085, India

^d School of Physics, University of Hyderabad, Hyderabad, Telangana 500046, India

ARTICLE INFO

Article history: Received 2 September 2019 Received in revised form 13 November 2019 Accepted 21 November 2019 Available online 26 November 2019

Keywords: Complex dielectric permittivity Dielectric relaxation Excess parameters Dipole moment DFT calculations

ABSTRACT

In the present manuscript, we are reporting the complex dielectric permittivity of 1,4-Butanediol/ Dimethylsulfoxide binary mixtures for entire concentrations in the temperature range of 298.15 K–323.15 K. The complex dielectric permittivity is measured in the frequency range of 20 MHz–20 GHz. The dielectric relaxation time (τ) of the binary mixtures are analyzed by using the Havriliak-Negami equation. Redlich-Kister polynomial equation is used to fit the excess molar volume (V_{m}^{E}), excess permittivity (ϵ^{E}), excess refractive index (n_{e}^{E}), excess inverse relaxation time ($1/\tau$)^E. The molecular association and structural packing in the liquid mixture are analyzed by using thermal expansion coefficient (α_{P}) parameter. The ordering nature of the molecular dipoles is discussed by evaluating the Kirkwood correlation factor(g^{eff}) and stability of the system by thermodynamic quantities. The experimental dipole moments of the pure and equimolar binary system are determined by using Higasi's method and compared with the theoretical dipole moment values obtained from DFT/B3LYP methods. Confirmation of hydrogen bond between 1,4-butanediol and DMSO is supported with the FT-IR and UV-Vis spectroscopy methods. The experimental dielectric and spectroscopic studies confirm the existence of hydrogen bond between the liquid mixtures.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The interaction of electric energy with the material mainly depends upon the characteristic property of the material, which plays a significant role in the determination of structural properties of the compounds. The usage of microwave heating has become important in the field of food processing, synthesis of chemical compounds, local heating of the biological tissues and medicinal industry [1–5]. The capability of the material to absorb microwave energy depends upon the macroscopic permittivity, which is connected with the dielectric loss of the material [6,7]. By choosing the proper polar solvent in the chemical industry can stimulate or prevent the chemical reaction, and modify the structural dynamics of the system. Hence, the study of dielectric properties of the polar liquids in the microwave frequency region is very much important in understanding the applications of microwave energy. The dielectric study of the liquid mixtures having the hydrogen bond donor and acceptor group compounds is useful for a various number of applications in the field of biological, medical, material science and technology [8,9].

* Corresponding author. *E-mail address:* vishwam.talloju@gitam.edu (T. Vishwam).

Dielectric relaxation studies of 3-Nitrotoulene with diethylacetamide, dimethylsulfoxide binary mixture are studied by Ajay Chaudhari et al. [10] and their studies reveal that effective dipoles rotate slowly in the mixture due to the hindering field produced by the multimers in the solution. The equilibrium properties of butanediols and temperature dependence of shape factor is studied by Zhuravley et al. [11] and explained that relaxation time depends upon the structural rearrangement of the molecules in the solution. The homogeneous and heterogeneous interaction between a series of three butanediols with 1,4 dioxane is studied by Gilani et al. [12-15] and dipropylsulfoxide in aqueous medium by Gabrielyan et al. [16]. Their studies confirm the presence of hydrogen bonding in the solutions affecting the excess dielectric parameters. The acoustic and thermodynamic properties of butanediols with respective pressure and temperature studied by Edward Zorebski et al. [17] and they reported that thermal expansion, compressibilities are increased with increase in the chain length of the molecules. The average number of hydrogen bonds, bonding energy associated with alcohol-DMSO mixtures are evaluated by Jia Guo-Zhu et al. [18,19] and chemical stability, the reactivity of the anilines, phenols in a nonpolar solvent medium by computational HOMO and LUMO calculations [20]. Molecular dynamics of the hydrogen bond network in the ethanol-water mixtures are reported by

Experimental and literature values for density (ρ), refractive index (n_D), dipole moment (μ), low frequency dielectric permittivity (ϵ_0) and relaxation time (τ) of the pure liquids at 298.15 K.

Liquid sample	Source/purity	Density ρ (g/cm ³)	ε ₀ (20 MHz)		ε ₀ (20 MHz)		n _D		n _D		Dipole moment (µ, D)		Relaxation time (τ, ps)	
		This work	Literature ^a	This work	Literature	This work	Literature	This work	Literature	This work	Literature				
1–4 Butanediol DMSO	Sigma-Aldrich/99% Sigma-Aldrich/99.5%	1.0134 1.0955	1.01345 [15] 1.09537 [66]	31.42 48.22	31.53 [15] 48.40 [67]	1.4430 1.4775	1.4447 [15] 1.4765 [68]	2.72 3.95	2.58 ^a 3.96 ^a	2157 19.78	2350 [11] 23.30 [19]				

Standard uncertainties u are $u(\rho) = 0.0002$, $u(\epsilon_0) = 2-3\%$, $u(n_D) = 0.0001$, $u(\mu) = 0.02D$ and $u(\tau) = 5-7\%$.

^a CRC handbook of chemistry and physics (2003-2004), 84th edition, Pg No:6-157,6-162, CRC press.

Javier Cardona et al. [21] and explained the fast breakage, subsequent reorganization of the hydrogen bonds in the solution. Their studies are in well agreed with the "wait-and-switch" mechanism model [22].

The present work deals with the dielectric relaxation and thermodynamic properties of the hydrogen-bonded polar binary liquid systems at different temperatures. The liquid samples under study are chosen based on scientific and practical importance in the chemical industry as well as in medical research. Dimethylsulfoxide is widely used in the production of microelectronics devices, TFT-LCD flat panel displays and biopreservation of stem cell banking whereas 1,4-Butanediol (BD) is used in the manufacturing of plastics, fibers, and solvent for many chemical reactions. The present work is in continuation of our research studies towards the interpretation of the type of molecular interaction in the binary liquid systems. In the current manuscript, we are reporting the dielectric permittivity of 1,4-butanediol (BD) with polar aprotic solvent-dimethylsulfoxide (DMSO) binary mixture at different temperatures. The aim behind the paper is to identify the type of intra and intermolecular interactions in terms of hydrogen bond donor and acceptor groups present in the compounds. In our earlier studies, molecular interaction between the mixture of alcohols, amines and ketones were studied because these compounds contain hydroxyl (-OH), amine $(-NH_2)$ and ketone (-C=0) groups [23-25]. The presence of these

Table 2

Dipole moment (μ) and excess dipole moment ($\Delta\mu$) of 1,4-Butanediol, DMSO and its equimolar binary mixture in the temperature range 298.15 K–323.15 K.

T (K)	1,4-Butanediol, µ _A (D)	DMSO, μ_B (D)	Equimolar binary mixture (BD + DMSO), μ _{AB} (D)	$\begin{array}{l} \Delta \mu = \mu_{AB} - \\ (\mu_A + \mu_B) \text{ in } \\ D \end{array}$
298.15	2.72	3.95	4.86	-1.81
303.15	2.70	3.93	4.83	-1.80
308.15	2.68	3.91	4.82	-1.77
313.15	2.65	3.90	4.80	-1.75
318.15	2.64	3.88	4.78	-1.74
323.15	2.62	3.87	4.76	-1.73

Standard uncertainties u are $u(\mu) = 0.02D$ and $u(T) = \pm 0.01$ K.

Table 3

Vol. fraction of DMSO per ml in	298.15	K		303.15	κ		308.15	K		313.15	κ		318.15	κ		323.15	κ	
BD/temp.	ε ₀	n _D	τ (ps)	ε ₀	n _D	τ (ps)	ε ₀	n _D	τ (ps)	ε ₀	n _D	τ (ps)	ε ₀	n _D	τ (ps)	ε ₀	n _D	τ (ps)
0 (BD)	31.42	1.4430	2157.00	30.31	1.4420	1818.00	29.21	1.4410	1219.00	28.16	1.4401	818.40	26.91	1.4390	556.40	25.52	1.4372	369.69
0.1	32.58	1.4462	1888.10	31.93	1.4451	1631.00	30.52	1.4431	1069.00	29.65	1.4412	712.20	27.77	1.4401	551.10	26.34	1.4383	369.20
0.2	34.27	1.4491	1762.20	32.78	1.4480	1451.00	31.89	1.4463	966.10	30.68	1.4434	652.30	29.68	1.4413	451.20	28.62	1.4402	334.10
0.3	35.50	1.4523	1537.00	34.02	1.4510	1180.00	33.82	1.4482	847.20	31.89	1.4462	512.10	31.56	1.4432	347.10	30.86	1.4413	291.20
0.4	36.45	1.4552	1317.00	35.12	1.4532	981.10	33.94	1.4502	716.60	32.92	1.4481	429.30	32.81	1.4454	303.40	31.47	1.4421	263.70
0.5	37.58	1.4591	1056.00	35.39	1.4580	891.10	34.92	1.4563	607.10	34.11	1.4523	362.20	34.02	1.4503	275.30	33.92	1.4464	217.20
0.6	40.87	1.4630	878.01	38.28	1.4621	731.20	37.79	1.4591	491.30	37.23	1.4564	312.10	36.72	1.4525	210.70	35.89	1.4502	168.40
0.7	42.84	1.4681	687.21	42.59	1.4662	512.30	42.47	1.4642	367.50	42.35	1.4614	242.50	41.47	1.4583	162.20	41.28	1.4553	117.20
0.8	44.98	1.4701	418.07	44.92	1.4683	317.10	43.88	1.4663	216.20	42.91	1.4643	161.30	41.71	1.4614	102.20	40.32	1.4582	61.45
0.9	47.75	1.4752	212.11	47.22	1.4732	119.20	46.92	1.4702	102.30	46.53	1.4682	83.32	46.09	1.4663	56.23	45.76	1.4644	33.57
1 (DMSO)	48.22	1.4775	19.78	48.18	1.4753	19.43	47.93	1.4750	17.12	46.91	1.4742	15.98	46.22	1.4721	15.58	45.89	1.4702	15.30

Standard uncertainties u are $u(\epsilon_0) = 2-3\%$, $u(n_D) = 0.0001$ and $u(\tau) = 5-7\%$.

groups readily accepts or transfers the electron between the constituents present in the system. Since DMSO is a suitable hydrogen bond acceptor by itself, so it forms strong hydrogen bond interactions between chains of the polymeric structures. In this way, it is interesting to study the molecular interaction between the hydroxyl group (-OH) and sulphonyl group (-S=O). There are only a few research articles available on the thermodynamic and dielectric study of BD with DMSO mixtures in the microwave frequency region [10,18,26–28]. This reason motivated us to study the volumetric, thermodynamic, spectroscopic and computational studies of 1,4-Butanediol with DMSO binary mixtures.

2. Experimental

2.1. Chemicals

All chemical samples used in the present work are purchased from (AR Grade) from Sigma Aldrich India and further purified by double distillation process under reduced pressure and collected only middle fractions of the compound [29]. The densities of the pure liquids and their mixtures are determined by using specific gravity bottle method [30]. Table 1 represents the information about purity, density (ρ), low frequency dielectric permittivity (ϵ_0) measured at 20 MHz, refractive index (n_D), dipole moment (μ) and relaxation time (τ) of pure liquids, and which are in good agreement with the reported values.

2.2. Measurement methods

The dipole moments of the pure and equimolar binary mixtures in the temperature range 298.15 K–323.15 K are determined by using Higasi's method [31]. In order to evaluate the experiment dipole moments (μ) of pure liquids of 1–4 Butanediol, Dimethylsulfoxide (DMSO) and their equimolar binary mixtures, dilute solutions of the pure liquids are prepared in a non-polar solvent benzene in the concentration range of 0 to 1 ml in a 10 ml solution. The static dielectric constant of these diluted samples is determined at 820 Hz using capacitance meter and its optical refractive index (n_D) by using Carl-Zeiss Abbe refractometer. The experimental dipole moment of the

Density (ρ), excess molar volume $V_{m,1}^{E}$, partial molar volume $V_{m,1}$, $V_{m,2}$, apparent molar volume $V_{\phi,1}$, $V_{\phi,2}$ and coefficient of thermal expansion (α_p) for the binary mixtures of DMSO and 1,4-Butanediol at temperatures 298.15 K–323.15 K.

X ₁	$ ho/g\ cm^{-3}$	$V_m^E/cm^3 mol^{-1}$	$V_{m,1}/cm^3 \ mol^{-1}$	$V_{m,2}/cm^3 mol^{-1}$	$V_{\varphi,1}/cm^3 \ mol^{-1}$	$V_{\varphi,2}/cm^3 \ mol^{-1}$	$lpha_p$ X 10 ⁴ /K
298.15 K							
0.0000	1.0134	0.000000	71.346	88.927	_	88.927	6.08
0.1221	1.0216	0.002576	71.339	88.927	71.340	88.930	6.42
0.2384	1.0298	0.004435	71.333	88.928	71.338	88.932	6.75
0.3492	1.0380	0.005639	71.329	88.930	71.335	88.935	7.08
).4549	1.0463	0.006248	71.326	88.932	71.333	88.938	7.40
).5560	1.0545	0.006313	71.324	88.935	71.330	88.941	7.72
0.6525	1.0627	0.005882	71.322	88.938	71.328	88.944	8.03
0.7450	1.0709	0.004998	71.321	88.941	71.326	88.946	8.34
).8336	1.0791	0.003700	71.320	88.944	71.323	88.949	8.64
.9185	1.0873	0.002023	71.319	88.947	71.321	88.951	8.94
.0000	1.0955	0.000000	71.319	88.950	71.319	-	9.22
03.15 K							
.0000	1.0099	0.000000	71.687	89.237	_	89.237	6.10
.1221	1.0180	0.003283	71.678	89.237		89.240	
					71.679		6.44
.2384	1.0260	0.005653	71.671	89.238	71.676	89.244	6.78
.3492	1.0341	0.007189	71.666	89.241	71.673	89.248	7.11
4549	1.0421	0.007966	71.662	89.244	71.670	89.251	7.43
5560	1.0502	0.008050	71.659	89.247	71.667	89.255	7.75
6525	1.0582	0.007501	71.656	89.251	71.664	89.258	8.06
7450	1.0663	0.006374	71.655	89.255	71.661	89.262	8.37
8336	1.0743	0.004719	71.654	89.259	71.658	89.265	8.68
9185	1.0824	0.002581	71.653	89.263	71.655	89.268	8.98
						03.200	
0000	1.0904	0.000000	71.653	89.266	71.653	-	9.26
08.15 K							
.0000	1.0064	0.000000	72.030	89.545	_	89.545	6.12
1221	1.0143	0.003990	72.019	89.545	72.021	89.550	6.47
2384	1.0222	0.006870	72.010	89.547	72.017	89.554	6.80
3492	1.0301	0.008738	72.004	89.550	72.013	89.559	7.13
4549	1.0380	0.009683	71.999	89.554	72.009	89.563	7.46
5560	1.0459	0.009787	71.995	89.558	72.006	89.567	7.78
6525	1.0538	0.009121	71.993	89.563	72.002	89.571	8.10
7450	1.0617	0.007752	71.991	89.568	71.998	89.576	8.41
8336	1.0695	0.005740	71.989	89.572	71.995	89.580	8.72
9185	1.0774	0.003139	71.989	89.577	71.991	89.584	9.02
0000	1.0853	0.000000	71.988	89.582	71.988	-	9.31
13.15 K	1 0020	0.000000	72.275	00 700		00 700	6.14
0000	1.0036	0.000000	72.375	89.799	-	89.799	6.14
1221	1.0113	0.004993	72.361	89.799	72.363	89.804	6.49
2384	1.0189	0.008599	72.350	89.801	72.359	89.810	6.82
3492	1.0266	0.010939	72.342	89.805	72.354	89.815	7.16
4549	1.0343	0.012125	72.336	89.809	72.349	89.821	7.49
5560	1.0419	0.012256	72.332	89.815	72.345	89.826	7.81
6525	1.0496	0.011425	72.328	89.821	72.340	89.831	8.13
7450	1.0573	0.009711	72.326	89.827	72.336	89.837	8.45
8336	1.0650	0.007192	72.324	89.833	72.331	89.842	8.76
9185	1.0726	0.003934	72.323	89.838	72.327	89.847	9.06
0000	1.0803	0.000000	72.323	89.844	72.323	-	9.35
Q 15 V							
18.15 K 0000	1.0007	0.000000	72.726	90.053	_	90.053	6.16
					-		
1221	1.0082	0.005975	72.709	90.054	72.712	90.060	6.51
2384	1.0156	0.010291	72.696	90.056	72.706	90.067	6.85
3492	1.0231	0.013094	72.686	90.061	72.700	90.073	7.18
4549	1.0305	0.014516	72.679	90.066	72.695	90.080	7.51
5560	1.0380	0.014676	72.674	90.073	72.689	90.086	7.84
6525	1.0454	0.013683	72.670	90.080	72.684	90.093	8.16
7450	1.0529	0.011633	72.667	90.087	72.678	90.099	8.48
8336	1.0603	0.008616	72.665	90.094	72.673	90.105	8.79
9185	1.0678	0.004714	72.664	90.101	72.668	90.111	9.10
0000	1.0752	0.000000	72.663	90.108	72.663	-	9.39
23.15 K							
0000	0.9979	0.000000	73.079	90.309	-	90.309	6.18
1221	1.0051	0.006907	73.059	90.309	73.062	90.317	6.53
2384	1.0124	0.011900	73.044	90.312	73.055	90.324	6.87
3492	1.0196	0.015144	73.032	90.317	73.048	90.332	7.21
4549	1.0268	0.016793	73.024	90.324	73.042	90.340	7.54
5560	1.0341	0.016981	73.018	90.331	73.036	90.347	7.87
CEDE	1.0413	0.015834	73.013	90.339	73.029	90.354	8.20
0525							
6525 7450	1.0485	0.013465	73.010	90.348	73.023	90.362	8.52

(continued on next page)

Table 4 (continued)

X ₁	$ ho/{ m g}~{ m cm}^{-3}$	$V_m^E/cm^3 \ mol^{-1}$	$V_{m,1}/cm^3\ mol^{-1}$	$V_{m,2}/cm^3 \ mol^{-1}$	$V_{\varphi,1}/cm^3\ mol^{-1}$	$V_{\varphi,2}/cm^3\ mol^{-1}$	$\alpha_p \: X \: 10^4/K^{-1}$
0.9185	1.0630	0.005458	73.006	90.364	73.011	90.376	9.14
1.0000	1.0702	0.000000	73.005	90.372	73.005	-	9.44

pure as well as equi molar binary systems is determined by using following equation

$$\mu^{2} = \frac{27k_{B}TM_{2}}{4\pi Nd_{1}} \frac{(a_{0} - a_{\infty})}{(\epsilon_{1} + 2)^{2}}$$
(1)

where a_0 and a_{∞} are the slopes of ε_0 and ε_{∞} with respect to the weight fraction of solute in a solvent medium, $d_1 =$ density of solvent medium, ε_1 = Static dielectric constant of solvent, M₂ = Molecular weight of solute, N = Avogadro's number, k_B = Boltzmann constant, T = Temperature in K. The dipole moments of pure liquids and their equimolar binary mixtures values at different temperatures are listed in Table 2. The complex dielectric permittivity of pure and binary mixtures is measured in the frequency range $(0.02 < \nu/\text{GHz} < 20)$ with an open-ended coaxial probe kit (Keysight 85,070 E) and a Vector Network Analyzer (Keysight E 8361C) and the data is analyzed in terms of the lumped coaxial probe model [32–34]. Thermostat controlled water circulation bath set up is used to control the sample temperature. The uncertainty involved in the temperature measurement is ± 0.01 K. The refractive index (n_D) of the sample is measured by using Abbe's refractometer. The uncertainty involved in the measurement of the refractive index is ± 0.0001 units. The experimental data of dielectric permittivity (ε_0 at 20 MHz), refractive index (n_D) and the relaxation times (τ ps) of 1,4-Butanediol, DMSO and their binary mixtures in the temperature 298.15 K to 323.15 K are listed in Table 3 respectively.

2.3. Determination of the dielectric parameters

From the experimentally measured data, excess molar volume $(V_{m,i}^E)$, partial molar volume $(V_{m,i})$, apparent molar volume $(V_{\phi,i})$, coefficient of thermal expansion (α_P) are calculated [35–41] and listed in Table 4 and molar polarization shown in Fig. 6. The excess refractive index [42] of

the given liquid mixture is determined by the following equation

$$n_{\rm D}{}^{\rm E} = n_{\rm D} - \left(n_{\rm D1}{}^2 \,\phi_1 + n_{\rm D2}{}^2 \,\phi_2\right)^{1/2} \tag{2}$$

where n_D is the refractive index of the liquid mixture; n_{D1} , n_{D2} , ϕ_1 , ϕ_2 are the refractive index and molar fraction of the solute and solvent respectively. The excess dielectric parameters such as excess dielectric permittivity (ϵ^E), excess inverse relaxation time ($1/\tau$)^E, Kirkwood correlation factor (g^{eff}), activation enthalpy (ΔH^*) and activation entropy (ΔS^*), reaction field parameters from excess Helmholtz energy (ΔF^E) are evaluated for the binary mixtures and their details are explained in our previous published papers [43,44].

The excess parameters, i.e., V_m^E , ε^E , n_D^E , $(1/\tau)^E$, were fitted with Redlich–Kister type polynomial equation [45] given as

$$y^{E} = x_{1}x_{2} \sum_{i=0}^{4} A_{i}(x_{1} - x_{2})^{i}$$
(3)

where y^E indicates the excess values and A_i are the coefficients, x_1 and x_2 are the molar fractions of the solute and solvent respectively.

The standard deviation is evaluated by using the below mathematical expression

$$\sigma = \left[\frac{\sum \left(y_{exp}^{E} - y_{cal}^{E}\right)^{2}}{N - P}\right]^{0.5}$$
(4)

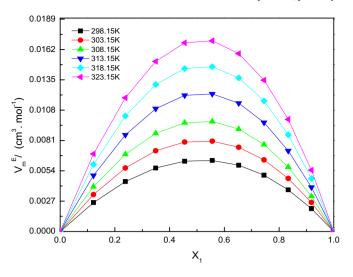
where N is the number of experimental points and P is the number of coefficients.

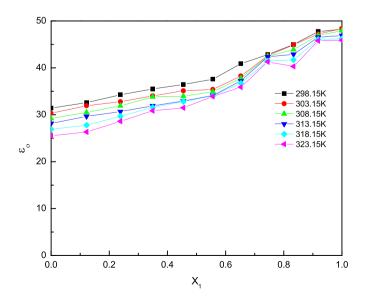
The coefficients of Redlich-Kister polynomial equations A_0 , A_1 , A_2 , A_3 , A_4 , and its standard deviation values are tabulated in Table 5.

Table 5

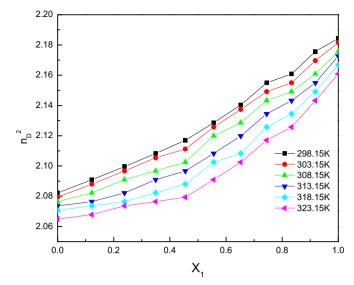
Redlich-Kister coefficient and standard deviation values at different temperatures.

Function	Temp.(K)	A ₀	A ₁	A ₂	A ₃	A4	σ
ε ^E	298.15	-12.3800	8.3358	34.5004	-32.5026	-24.1455	0.0785
	303.15	-20.1813	8.6241	83.7802	-26.3377	-86.6190	0.0376
	308.15	-18.8232	12.4713	95.6590	-41.1836	-111.909	0.1555
	313.15	-19.3208	-0.6106	95.1707	-24.8526	-95.7045	0.1519
	318.15	-15.1298	3.8472	73.1075	-41.9850	-77.5624	0.1363
	323.15	-12.4200	1.6366	65.5584	-41.4492	-73.0822	0.0187
$(1/\tau)^{E}$	298.15	-0.1025	0.0632	0.0392	0.3137	-0.4871	0.0070
	303.15	-0.1036	0.0716	0.0137	0.2753	-0.4119	0.0074
	308.15	-0.1104	0.0753	0.0139	0.2915	-0.4328	0.0064
	313.15	-0.1222	0.0827	0.0149	0.3242	-0.4812	0.0053
	318.15	-0.1304	0.0962	0.0040	0.2936	-0.4455	0.0065
	323.15	-0.1560	0.1288	-0.0623	0.2542	-0.3162	0.0076
nDE	298.15	-0.0079	-0.0069	0.0346	-0.0013	-0.0345	0.0004
	303.15	-0.0074	-0.0045	0.0172	0.0077	-0.0230	0.0002
	308.15	-0.0109	-0.0182	0.0113	0.0334	-0.0302	0.0003
	313.15	-0.0218	-0.0031	0.0455	0.0088	-0.0876	0.0000
	318.15	-0.0242	-0.0112	0.0030	0.0304	-0.0128	0.0000
	323.15	-0.0311	0.0044	0.0382	0.0038	-0.0545	0.0005
VmE	298.15	0.0254	-0.0019	0.0001	-0.0000	0.0000	0.0001
	303.15	0.0323	-0.0024	0.0002	-0.0000	0.0000	0.0012
	308.15	0.0393	-0.0029	0.0002	-0.0000	0.0000	0.0009
	313.15	0.0492	-0.0037	0.0003	-0.0000	0.0000	0.0010
	318.15	0.0589	-0.0045	0.0003	-0.0000	0.0000	0.0015
	323.15	0.0682	-0.0053	0.0004	-0.0000	0.0000	0.0001




Fig. 1. Excess molar volume (V_m^E) versus mole fraction (X_1) of DMSO in 1,4-Butanediol at different temperatures.

2.4. Computational details


The minimum energy-based geometry optimization and single point energy calculation have been performed on 1,4 -Butanediol and DMSO monomer and dimer by using DFT/B3LYP method with 6-311G** basis set [46–48]. The Natural Bond Orbital (NBO) analysis is performed on the geometrical optimized conformer structure of monomers to understand molecular interactions between them and HOMO, LUMO calculations to interpret the chemical stability of the molecule [20].

3. Results and discussion

The experimentally determined values of density along with volumetric parameters such as excess molar volume (V_m^E) , partial molar volume $(V_{m,i})$, apparent molar volume $(V_{\varphi ri})$ and coefficient of thermal expansion (α_P) [35,36] of the binary mixtures are summarized in Table 4. In general, the sign of excess molar volume indicates the contraction and expansion of volume of the liquids through mixing. The magnitude of excess molar volume depends upon the type of physical,

Fig. 2. Plot of low frequency dielectric permittivity (ε_0) measured at 20 MHz versus mole fraction (X₁) of DMSO in 1,4-Butanediol at different temperatures.

Fig. 3. Experimental data of high frequency dielectric constant $(\varepsilon_{\infty} = n_D^2)$ versus mole fraction (X_1) of DMSO in 1,4-Butanediol at different temperatures.

chemical interactions and changes in structural contributions in the liquid systems. From Fig. 1 it is observed that excess molar volume (V_m^E) values are possitive for 1,4-Butanediol, DMSO and their binary mixtures for all concentrations and temparatures. The positive values of V_m^E arise due to the difference in size and shape of the components, breakage of liquid order due to mixing, variation in the molecular orientation and intermolecular enrgies between like and unlike molecules [40,41,49]. The increase in concentration of DMSO in BD medium reduces the number of hydrogen bonds linkage and increases the dipole-dipole interactions in the liquid mixture results in positive values of V_m^E . The rise in temperature weakens the molecular association in the liquid mixtures and causes increase in the magnitude of V_m^E values as shown in Fig. 1.

The partial molar volume provides information about the level of molecular interactions taking place in the binary liquid systems. It represents the intuitions regarding the structural aspects and environment of the DMSO molecules in the butanediol solutions [35,50]. The vary in the partial molar volume of the solute and solvent at all temperature indicates (from Table 4) the changes in the intermolecular forces between the components present in the system. Based on the density-temperature dependence, the coefficient of thermal expansion α_p [35]

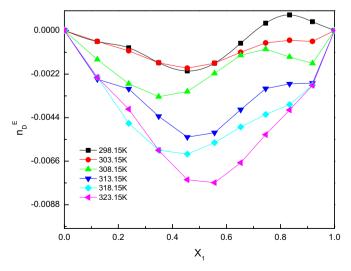


Fig. 4. Excess refractive index (n_D^E) versus mole fraction (X_1) of DMSO in 1,4-Butanediol at different temperatures.

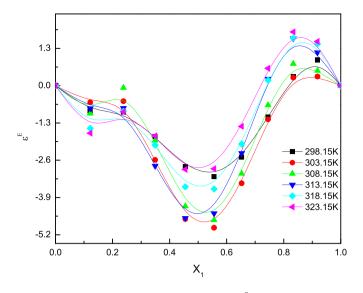
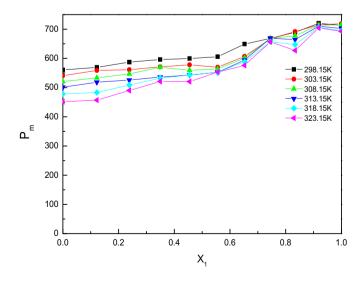
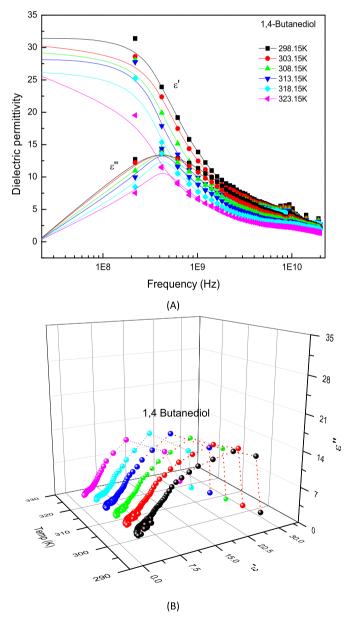
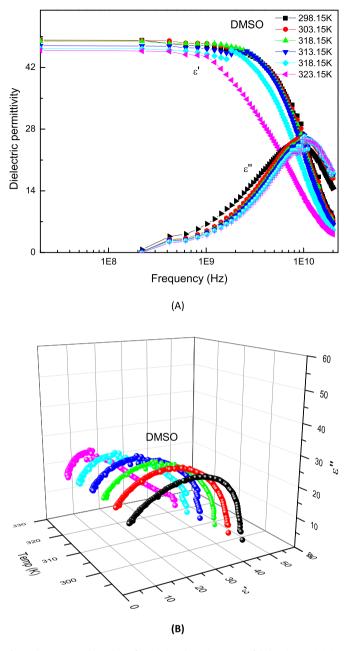


Fig. 5. Experimental values of excess dielectric permittivity (ϵ^E) versus mole fraction (X₁) of DMSO in 1,4-Butanediol at different temperatures.

is calculated and tabulated in Table 4. The coefficient of thermal expansion provides information about the orientation of the molecules, type of interaction in the solution and structural packing, which are related to entropic restructuring in terms of structural cavities [35,36]. The positive values of α_p indicates the existence of molecular interaction between the components from self-associative nature to the dissimilar type of interactions in the binary system. The rise in temperature causes increase in thermal vibration of atoms in the solution and results in increase of α_p values (see Table 4) with temperature [35,36,51]. The increase in α_p value may be due to increased dipolar association induced among the molecules by increment in temperature [35].

The variation of low frequency dielectric permittivity (ε_0) measured at 20 MHz with respective molar concentration of DMSO in 1,4-Butanediol (BD) at all temperatures (Table 3), is shown in Fig. 2. From Fig. 2, it is observed that the permittivity value increases with increase in the concentration of DMSO in a BD medium. The dielectric permittivity primarily depends upon the structure of the molecule and type of interaction exists between the component present in the liquid system. Further, there is a non-linear variation of dielectric permittivity with an increase in molar concentration of DMSO at all temperatures and it shows that there is an interaction present between the dissimilar type


Fig. 6. Molar polarization (P_m) versus mole fraction (X_1) of DMSO in 1,4-Butanediol at different temperatures.

of molecules which leads to heteromolecular interaction. The DMSO has higher polarity compared to the BD and it is ready to form hydrogen bonds with nearby molecules. In the present system, the heteromolecular interaction is majorly due to the formation of electron donor-acceptor hydrogen bonding between BD and DMSO molecule.

The square of the refractive index, i.e. high frequency dielectric permittivity ($\varepsilon_{\infty} = n_D^2$) provides valuable information regarding the molecular interaction between the compounds like hetero or homogeneous, and also some of the essential properties like electronic polarizability. The plot of the square of the refractive index ($\varepsilon_{\infty} = n_D^2$) of DMSO in BD medium for all concentrations and temperature is as shown in Fig. 3. From this graph, it is noticed that the variation of ε_{∞} with mole fractions is non-linear and which indicates the presence of heteromolecular interaction taking place in the liquid mixture. The variation of excess refractive index (n_D^E) of a binary mixture is represented in Fig. 4, and it is observed that values of n_D^E are negative for all the concentration ranges and temparatures. The change in excess refractive index with temparature is associated with change in fluid density

Fig. 7. A) Frequency-dependent of real (ε') and imaginary part of dielectric permittivity (ε'') of 1,4-Butanediol with respective frequency at different temperatures, B) Complex plane plot ε'' vs ε' at different temperatures.

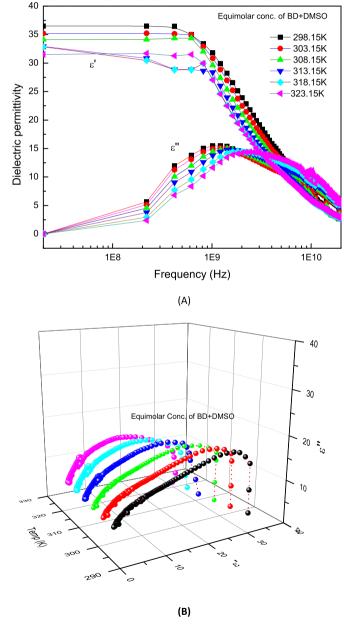


Fig. 8. A) Frequency-dependent of real (ε') and imaginary part of dielectric permittivity (ε'') of DMSO with respective frequency at different temperatures, B) Complex plane plot ε'' vs ε' at different temparatures.

with temperature and also dissimilar type of interaction in the liquid mixtures [52].

The excess dielectric permittivity (ϵ^{E}) indicates the qualitative information about the existence of multimers in the solution [23]. If ϵ^{E} values are negative, it suggests the weakening of effective dipolar polarization due to the presence of multimers in the solution which causes decrease in the effective dipole moment. The positive values of ϵ^{E} correspond to the strengthening of dipolar polarization due to the net effective addition of individual polarizability of the dipoles as well as an increase in the net dipole moment of the system. From Fig. 5, it is observed that excess dielectric permittivity values are negative up to 0 < x_2 < 0.9 mol fraction of DMSO and positive after this concentration. This may be due to the molecular interaction changes from hydrogen bond to dipole-dipole interaction due to more polarity of the DMSO. The negative values of excess dielectric permittivity clearly shows the existence of multimers in the solution that causes a decrease in the degree of polarization and reduction in the effective dipole moment. The reduction in the net dipole moment in the binary mixtures might be due to antiparallel hetero interaction of the mixture components. The minimum value of excess dielectric permittivity of equimolar concentration explains the presence of strong hydrogen bonding between DMSO and BD molecules due to strong polarized S==O bond of DMSO. The increase in temperature causes the breakage of molecular bonds to result in changes in the excess dielectric permittivity (ϵ^{E}) values which are shown in Fig. 5.

The molar polarization of the binary mixture (P_m) which is calculated from the Kirkwood-Frohlich equation [53,54] is shown in Fig. 6. The molar polarization (P_m) strongly depends upon the dielectric permittivity and dipole moment of the solute or solvent medium and it also reveals the information about chain length and molecular size differences in the binary mixtures. From Fig. 6 it is observed that molar

Fig. 9. A) Frequency-dependent of real (ε') and imaginary part of dielectric permittivity (ε'') of equimolar binary mixtures of 1,4-Butanediol + DMSO with respective frequency at different temperatures, B) complex plane plot ε'' vs ε' at different temparatures.

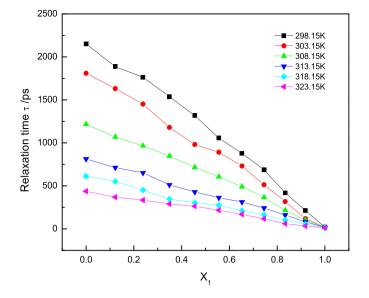


Fig. 10. Plot of average relaxation time (τ/ps) versus mole fraction (X_1) of DMSO in 1,4-Butanediol at different temperatures.

polarization value increases with increase in the concentration of DMSO in BD medium at all temperatures and it might be due to the progressive alignment of the net dipoles in the liquid mixture towards the electric field direction. The molar polarization value decreases with an increase in temperature, and it corresponds to a decrease in the effective dipole moment and degree of susceptibility of the binary liquid mixtures.

The dielectric spectra and corresponding relaxation plots of 1,4-Butanediol, DMSO and its equimolar binary mixture at different temperatures are shown in Figs. 7, 8 and 9 respectively. Havriliak-Negami relation [55] is used to fit the Cole-Davidson and Cole-Cole plot [56–58] by using WINFIT software (NOVO Control Instruments). The shape factor (β) of the 1,4-Butanediol is in the range of 0.5320 < β < 0.6100 and β = 1, 0.879 < α < 1 for DMSO, i.e., Cole-Cole plot in the temperature range 298.15 K–323.15 K. From Fig. 7A, it is observed that the dielectric loss peak is maximum at lower frequencies (MHz) and it is due to selfassociative nature of alcohol molecules. Due to the presence of two hydroxyl groups within the molecule, it tries to form inter and

Fig. 11. Plot of excess relaxation time $((1/\tau)^E)$ versus mole fraction (X_1) of DMSO in 1,4-Butanediol at different temperatures.

intramolecular hydrogen bonds which may cause different selfassociative structures in the liquid solution. Whereas in the case of DMSO, the dielectric loss peak shifting towards higher frequencies (see Fig. 8A) due to non-associative nature of DMSO molecules. The possible interaction between the DMSO molecules is dipole-dipole interaction due to higher polarity nature of S=0 group.

Further, with the increase in the concentration of DMSO in BD medium, we notice that the dielectric loss peak is slowly shifting towards higher frequencies, which causes a decrease in the relaxation time values. From the permittivity spectra of equimolar binary mixtures (Fig. 9A), it is noticed that there is a possible formation of the hydrogen bond between BD and DMSO molecules which affects the dielectric loss peak and it appears broader when compared to BD and DMSO graphs. The larger surface area of the hydroxyl group of BD and higher polarity nature of S=O group in DMSO readily form a hetero molecular interaction in terms of strong hydrogen bonding. Moreover, the real part of the dielectric permittivity increases with increase in the concentration of DMSO and decreases with increase in frequency at all temperatures as shown in Figs. 7A, 8A and 9A respectively.

The relaxation time of BD, DMSO and its binary mixture are determined by using the Cole-Davidson, Cole-Cole relaxation models [56–58] and their corresponding complex plane plots are shown in the Figs. 7B, 8B and 9B. From Fig. 10, it is observed that the dielectric relaxation time values decrease with increase in the concentration of DMSO in a BD medium and it is due to molecular interaction changes from self-associative nature to dipole-dipole interaction. Initially, as the relaxation time values are higher due to the presence of selfassociative nature of BD molecules, these molecular dipoles takes a longer time to attain the mean equilibrium positions. Further with increase in DMSO concentration, there is a decrease in the number of hydrogen bonds that leads to a decrease in the relaxation time values. The increase in temperature decreases the number of hydrogen bond networks in the solution and disturbs the orientation of the dipoles and causes to decrease in the relaxation time values which is as shown in Fig. 10.

The plot of excess inverse relaxation time $(1/\tau)^{E}$ for an entire molar fraction of DMSO in BD at all temperatures is shown in Fig. 11. From Fig. 11, it is noticed that $(1/\tau)^{E}$ values are negative [59,60] which suggests the presence of linear polymeric structure which causes the slower rotation movement of the dipoles in the presence of the electric field. The increase of DMSO concentration in BD generates the resistance field in such a way that effective dipoles rotates slowly in the liquid mixture.

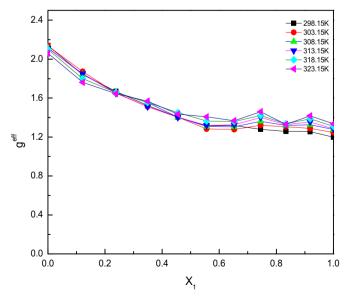


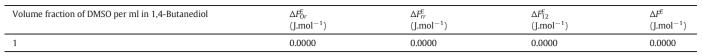
Fig. 12. Kirkwood effective (g^{eff}) correlation factor versus mole fraction (X_1) of DMSO in 1,4-Butanediol at different temperatures.

Variation of thermodynamically parameters ΔG^* , ΔH^* and ΔS^* with respective volume concentration of DMSO in 1,4-Butanediol at different temperatures.

Vol. concentration	T/K	$\Delta H^*/(kcal/mol)$	$\Delta G^*/(kcal/mol)$	$\Delta S^*/(Cal/mol/K)$
of DMSO per ml in 1,4-Butanediol	1/10			20 / (Cul/mol/R)
solution				
1,4-Butanediol	298.15		23.539	311.02
	303.15	446.000	23.542	305.88
	308.15	116.223	22.954	302.82
	313.15		22.317	300.02
	318.15 323.15		21.968 21.457	296.40 293.39
0.1	298.15		23.217	328.74
	303.15		23.280	323.11
	308.15	121.182	22.624	319.99
	313.15		21.975	316.95
	318.15		21.690	312.87
	323.15		20.996	310.17
0.2	298.15		23.046	333.94
	303.15	122 500	22.985	328.63
	308.15 313.15	122.560	22.364 21.746	325.31 322.09
	318.15		21.161	318.87
	323.15		20.729	315.27
0.3	298.15		22.707	335.27
	303.15		22.464	330.54
	308.15	122.618	22.027	326.59
	313.15		21.117	324.28
	318.15		20.467	321.23
	323.15		20.358	316.59
0.4	298.15		22.324	339.51
	303.15 308.15	123.499	21.999	334.98 330.85
	313.15	125.499	21.597 20.656	328.57
	318.15		20.109	325.12
	323.15		20.087	320.16
0.5	298.15		21.777	327.34
	303.15		21.756	322.01
	308.15	119.324	21.174	318.67
	313.15		20.214	316.65
	318.15		19.852	312.81
0.6	323.15		19.570 21.320	308.84
0.0	298.15 303.15		21.258	348.67 343.12
	308.15	125.222	20.631	339.58
	313.15	1201222	19.828	336.72
	318.15		19.139	333.59
	323.15		18.883	329.22
0.7	298.15		20.712	359.57
	303.15		20.360	354.80
	308.15	127.864	19.885	350.58
	313.15		19.166	347.28
	318.15 323.15		18.453 17.911	344.06 340.41
0.8	298.15		19.480	384.14
	303.15		19.152	378.88
	308.15	133.953	18.528	374.76
	313.15		18.106	370.12
	318.15		17.230	367.05
	323.15		16.162	364.68
0.9	298.15		17.798	335.55
	303.15	117 702	16.684	333.69 328.53
	308.15 313.15	117.793	16.606 16.381	328.53 324.00
	318.15		15.644	321.22
	323.15		14.512	319.76
DMSO	298.15		11.948	72.02
	303.15		12.127	70.25
	308.15	33.411	12.181	68.93
	313.15		12.096	68.10
	318.15		12.104	67.00
	323.15		11.817	66.86

The effective Kirkwood correlation factor (g^{eff}) of BD-DMSO binary mixtures at all temperatures is shown in Fig. 12. From Fig. 12 it is noticed that, g^{eff} factor for BD is higher than unity for all the temperatures

which represents there is a higher degree of cooperation among the self-associated dipoles and polarization in the pure liquid state. Whereas the g^{eff} value of DMSO is lesser than the BD at all temperatures which corresponds to lack of mutual coordination among the non-selfassociated electric dipoles. This phenomenon causes all the electrical dipoles aligned in anti-parallel direction. Also, the geff decreases nonuniformly with increase in DMSO concentration in BD medium and it shows the presence of hydrogen-bonded networks in the binary system between the hydroxyl group of BD and -S=O group of DMSO at all temperatures. Moreover, the decrease of geff values with increase of DMSO concentration causes weakening of the interaction energy among the self-associated alcohol groups by breaking the number of hydrogen bonds and results in forming anti-parallel dipoles in the liquid mixture. At higher concentration of DMSO, the interactions present in the liquid mixtures dominated by dipole-dipole interactions leads to complete anti-parallel alignment of the dipoles which is observed from Fig. 12. The increase in temperature decreases the coordination among the dipoles and destabilizes the active structure and hence, the correlation among the dipoles decreases.


The thermodynamic parameters such as enthalpy of activation ΔH^* , entropy of activation ΔS^* and Gibbs free energy of activation ΔG^* are evaluated by using Eyring's rate equations [61] and they are summarized in Table 6 respectively. The enthalpy of activation ΔH^* provides the information regarding either the system has taken the heat energy or given off to the surroundings during the chemical reaction. If the ΔH^* values are positive, that indicates heat energy is absorbed (endothermic reaction) and the system is in favor of forming the hydrogen bonds in the system. If the values of ΔH^* are negative and it corresponds to heat energy released to the surroundings (exothermic reaction) and the system is progressing towards attaining a stable position. From Table 6, it is noticed that ΔH^* values are positive which suggests that the surrounding medium is supportive to form hydrogen bonds between the BD and DMSO molecules. The values of Gibbs free energy of activation ΔG^* are positive and its magnitude is decreasing with increase in the concentration of DMSO and temperature. The decrease in ΔG^* values with increase in DMSO concentrations may be due to the type of interaction in the liquid system that changes from hydrogen bond to dipole-dipole interactions. Further, the entropy of activations plays a significant role in concluding the ordering of the dipoles and the surrounding environment during the orientation of the molecules. The positive value of ΔS^* attributes that the surrounding environment is not supportive for the orientation process of the molecules and the dipoles are spread in a random direction in the activated state. The negative values of ΔS^* prevails that environment of the system is supportive and dipoles being aligned in an orderly in an activated state. As seen from the Table 6, it is clear that the ΔS^* values are positive for all the concentrations of DMSO in BD medium and which corresponds to surrounding environment of the system is noncooperative in the orientation process of the dipoles in the field direction.

The values of excess Helmholtz energy (ΔF^E) [62] and its components $\Delta F^{E_{or}}$, $\Delta F^{E_{rr}}$ and $\Delta F^{E_{12}}$ are tabulated in Table 7. From Table 7 it is noted that the values of $\Delta F^{E_{or}}$ are positive and suggests that the existence of long-range coulombic attractive forces between the alcohol and DMSO molecules. The short-range interaction between the similar molecules are given by the term ΔF^{E_r} . The values of ΔF^{E_r} are positive up to certain concentrations (0 < x < 0.2) of DMSO and negative for remaining concentrations. It indicates that for lower concentrations the interactions are homogeneous and rest of the concentrations are heterogeneous. The force of interaction between different molecules is given by the term $\Delta F^{E_{12}}$. The negative values of $\Delta F^{E_{12}}$ represents the parallel alignment of the dipoles in field direction (alcohol rich region) whereas positive value shows the antiparallel alignment of the dipoles due to dipole-dipole interactions (sulphonyl rich region). Further, the total excess Helmholtz energy (ΔF^E) values are positive for most of the concentrations and which indicates the presence of β clusters in the solutions

Variation of $\Delta F_{Or,}^{E} \Delta F_{rr,}^{E} \Delta F_{12}^{E}$ and ΔF^{E} with volume fraction of DMSO in 1,4-Butanediol-

Volume fraction of DMSO per ml in 1,4-Butanediol	ΔF_{Or}^{E} (J.mol ⁻¹)	ΔF_{rr}^{E} (J.mol ⁻¹)	ΔF_{12}^E (J.mol ⁻¹)	$\Delta F^{E} (J.mol^{-1})$
T = 298.15 K				
0	0.0000	0.0000	0.0000	0.0000
0.1	-7.5013	0.1744	-0.7211	-8.0480
0.2	-3.0764	0.0811	-0.9820	-3.9773
0.3	16.4632	-0.6625	-1.3626	14.4381
0.4	42.7813	-2.5145	-1.5750	38.6918
0.5	67.2978	-4.7865	-1.0887	61.4226
0.6	59.2186	-1.6876	0.3746	57.9056
0.7	58.2243	-1.2028	0.4757	57.4972
0.8	44.0225	-0.1947	0.1128	43.9405
0.9	6.8451	0.1454	-0.4082	6.5823
1	0.0000	0.0000	0.0000	0.0000
Т = 303.15 К				
0	0.0000	0.0000	0.0000	0.0000
0.1	-13.6200	0.1910	-0.4414	-13.8704
0.2	2.1373	-0.1011	-2.1410	-0.1048
0.3	23.8393	-1.5227	-2.7367	19.5800
0.4	51.9687	-4.1339	-2.7246	45.1102
0.5	91.9193	-10.8100	-3.6645	77.4448
0.6	92.7835	-7.9138	-0.1743	84.6954
0.7	61.4845	-1.2953	0.5482	60.7373
0.8	45.9771	-0.1369	0.0845	45.9246
0.9	18.4223	0.1832	-0.1971	18.4084
1	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000
T = 308.15 K	0.0000	0.0000	0.0000	0.0000
0 0.1	0.0000	0.0000	0.0000	0.0000
	-10.1323	0.2652	-0.9346	-10.8017
0.2	0.0839	-0.0039	-2.1471	-2.0670
0.3	16.0840	-0.7006	-1.5914	13.7920
0.4	57.3823	-5.1502	-3.4519	48.7803
0.5	90.5061	-10.1606	-3.0579	77.2876
0.6	92.5282	-7.4278	0.1415	85.2419
0.7	56.2051	-0.5121	0.2890	55.9820
0.8	55.5221	-0.7731	0.4027	55.1517
0.9	15.8107	0.2553	-0.3500	15.7160
1	0.0000	0.0000	0.0000	0.0000
Т = 313.15 К				
0	0.0000	0.0000	0.0000	0.0000
0.1	-13.3356	0.2627	-0.7120	-13.7849
0.2	1.9805	-0.0994	-2.5243	-0.6432
0.3	26.9517	-1.9043	-3.3915	21.6559
0.4	59.7109	-5.4241	-3.5789	50.7079
0.5	91.2744	-9.6351	-2.6648	78.9746
0.6	89.2699	-6.0425	0.4530	83.6804
0.7	45.0254	0.7145	-0.6172	45.1227
0.8	56.7487	-0.6598	0.3572	56.4461
0.9	5.1402	0.1661	-0.7739	4.5324
1	0.0000	0.0000	0.0000	0.0000
T 21015 V				
T = 318.15 K 0	0.0000	0.0000	0.0000	0.0000
0.1	-4.1382	0.1901	-1.9829	-5.9310
0.2	-0.6732	0.0319	-2.4255	-3.0668
0.3	18.3954	-0.8878	-1.9478	15.5599
0.4	50.1792	-3.2888	-1.8597	45.0306
	82.2523	-6.9316		
0.5			-1.1977	74.1230
0.6	86.9137	-4.8926	0.7169	82.7379
0.7	47.9006	0.8029	-0.7044	47.9990
0.8	66.4595	-1.3519	0.6451	65.7528
0.9 1	0.6991 0.0000	0.0278 0.0000	-1.0416 0.0000	-0.3147 0.0000
	0.0000	0.0000	0.0000	0.0000
T = 323.15 K	0.0000	0.0000	0.0000	0.0000
0	0.0000	0.0000	0.0000	0.0000
0.1	-3.5708	0.1945	-2.6161	-5.9924
0.2	-4.3488	0.2083	-2.5519	-6.6924
0.3	13.3474	-0.5267	-1.4624	11.3583
0.4	57.1430	-4.5182	-2.5624	50.0624
0.5	75.1821	-4.7623	-0.1880	70.2319
0.6	92.6893	-5.6376	0.9927	88.0444
0.7	44.6942	1.3036	-1.4511	44.5467
0.8	85.9301	-3.5003	1.3094	83.7391
0.9	0.5566	0.0235	-1.2216	-0.6415

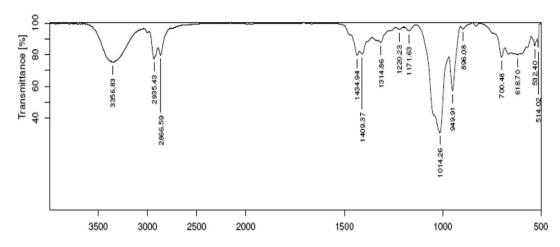


Fig. 13. FT-IR Spectra of equimolar binary mixtures of 1,4-Butanediol and DMSO.

with the anti-parallel orientation of the dipoles so that total internal energy of the system is decreased [63].

Moreover, Fig. 13 indicates the influence of hydrogen bonding in the frequency scale compare to individual stretching frequencies of 1,4-Butanediol and DMSO. This FT-IR spectrum clearly suggests that there is a change in the frequency from 3364 to 3356 cm^{-1} by a difference of 8 cm⁻¹ units. This is due to the hydrogen bonding interaction of hydroxy hydrogen atom in 1,4-Butanediol with sulphoxide in DMSO. This effect also decreased the C-O stretching frequency from 1044 to 1014 cm⁻¹ by 30 cm⁻¹. This change in frequency indicates the result of hydrogen bonding in the equimolar mixture of 1,4-Butanediol and DMSO. This influence also observed in their UV-Vis absorption spectra. Fig. 14 shows the UV absorption spectra of 1,4- Butanediol, DMSO and its equimolar mixture. From the UV-Vis graph, it is observed that there is a redshift concerning BD whereas blue shift concerning DMSO which indicates the electronic influence of components in the mixture. Both the FT-IR and UV-Vis spectra studies confirm the existence of hydrogen bond between 1,4 Butanediol and DMSO binary mixtures.

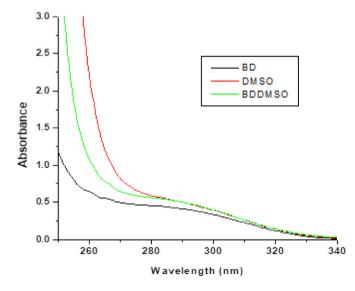


Fig. 14. UV-Vis absorption spectra of 1,4-Butanediol, BD and its equimolar concentration.

The experimental dipole moment of BD, DMSO and their binary system is compared with the theoretical dipole moments values which are calculated using DFT/B3LYP with 6-311G** basis set and tabulated in Table 8. The theoretical dipole moment of 1,4-Butanediol is equal to zero due to its symmetry of the structure and its value is verified with the computational chemistry comparison and benchmark database (CCCBDB-NIST). From Table 8, it is observed that the difference in interaction energy between BD and DMSO is found to be 167 kcal/mol and it supports the existence of hydrogen bond between BD and DMSO molecules. Based on the Natural Bond Orbital analysis the possible conformation structure of formation of hydrogen bonding between BD and DMSO is analyzed and shown in Fig. 15. The excess dipole moment ($\Delta\mu$) values are negative (see Table 2) which indicates the absence of ionic contribution. The negative values of $\Delta \mu$ is due to the presence of the polarization effect or effect of an induced solvent medium in the binary mixture [64,65].

The calculated HOMO and LUMO energies of BD, DMSO with DFT method are listed in Table 9. The HOMO-LUMO energies describe the electron donating, electron acceptor ability and difference in energy indicates the energy gap. If the energy gap is more then it suggests stable and unreactive, if it is a smaller value then it resembles active structure [20]. From Table 9, it is noticed that DMSO has lesser energy gap than

Table 8

Experimental and theoretical dipole moments (μ) of pure system of 1,4-Butanediol, DMSO and their equimolar binary systems at 298.15 K.

Dipole moment in Debye	Gaseous state	Experiment
System/basis sets	DFT/B3LYP	Higasis's method
	6-311G**	
1,4-Butanediol (BD)	0.00 ^a	2.72
Energy (a.u), E _{BD}	-308.953	
DMSO	3.88	3.95
Energy (a.u), E _{DMSO}	-553.2501	
Equimolar binary mixtures (BD + DMSO)	7.65	4.86
Energy (a.u) E _{BD+DMSO}	-861.9356	
Difference in energy (kcal/mol)	167.8588	
$E_{T} = E_{BD+DMSO} - (E_{BD} + E_{DMSO})$		

Uncertainties u in $u(\mu) = 0.02D$ and u(E) = 0.0002.

^a CCCBDB, National Institute of Standard and Technology, Standard Reference Database, 2018.

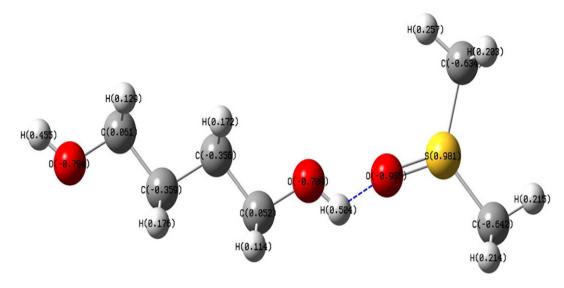


Fig. 15. Optimized converged geometrical structure of the hydrogen-bonded system of 1,4-Butanediol + DMSO in the gaseous state from DFT 6-311G* basis set using Gaussian-09 (with full natural bond analysis (NBO)).

I dDIC 3	
DFT calculations of HOMO, LUMO and energy g	gap.

Molecule	НОМО	LUMO	$\Delta E (eV)$
1,4-Butanediol	-7.185	0.969	8.154
DMSO	-6.026	1.163	7.190

butanediol and it suggests that DMSO is actively involved in forming the hydrogen bond with the butanediol molecules.

4. Conclusions

Table 0

The complex dielectric permittivity of 1,4- Butanediol/ Dimethylsulfoxide binary mixtures for entire concentrations have been investigated in the microwave frequency region at different temparatures 298.15 K-323.15 K. The dielectric relaxation time value decreases with increase in DMSO concentration in 1,4-Butanediol medium due to interaction between the molecules changes from selfassociative to dipole-dipole interaction. The excess dielectric parameters such as excess dielectric permittivity (ε^{E}), excess relaxation time $(1/\tau)^{E}$, excess refractive index (n_{D}^{E}) values are negative which indicates the presence of heteromolecular interactions taking place in the binary mixtures. The excess dipole moment ($\Delta\mu$) of the equimolar binary mixture for all temperatures shows negative value which indicates the presence of polarization contribution due to the solvent -induced medium effect. The excess Helmholtz energy (ΔF^E) values are positive for most of the concentrations and it reveals the existence of clusters in the solution through hydrogen bonding. The presence of hydrogen bond between DMSO and BD molecules is confirmed from the experimental FT-IR and UV spectroscopic studies.

Acknowledgments

The authors gratefully acknowledge University Grants Commission Networking Resource Centre, School of Physics, University of Hyderabad, for giving the Opportunity to use their Research lab facilities to carry out the above work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.molliq.2019.112190.

References

- R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, Tetrahedron Lett. 27 (1986) 279–282.
- [2] C.O. Kappe, Chem. Int. Ed. 43 (2004) 6250-6284.
- [3] M.B. Gawande, S.N. Shelke, R. Zboril, R.S. Varma, Acc. Chem. Res. 47 (2014) 1338–1348.
- [4] S.S. Lin, C.H. Wu, M.C. Sun, C.M. Sun, Y.P. Ho, J. Am. Soc. Mass Spectrom. 16 (2005) 581–588.
- [5] J. Lou, A.K. Paravastu, P.E. Laibinis, T.A. Hatton, J. Phys. Chem. A 101 (1997) 9892–9898.
- [6] E.T. Thostenson, T.W. Chou, Compos. Part A 30 (1999) 1055-1071.
- [7] D.E. Clark, D.C. Folz, J.K. Mater, Mater. Sci. Eng. A 287 (2000) 153-158.
- [8] S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J.Am.Chem.Soc. 122 (2000) 3756-3753.
- [9] E.H. Grant, R.J. Sheppard, G.P. South, Dielectric Behaviour of Biological Molecules in Solutions, Clarendon Press, Oxford, 1978.
- [10] A. Chaudhari, H.C. Chaudhari, S.C. Mehrotra, Bull. Kor. Chem. Soc. 25 (9) (2004) 1403–1407.
- [11] V.I. Zhuravlev, N.V. Lifanova, T.M. Usacheva, Russ. J. Phys. Chem. A 83 (2) (2009) 151–157.
- [12] A. Ghanadzadeh Gilani, M. Moghadam, T. Ghorbanpour, J. Chem. Thermodyn. 113 (2017) 263–275.
- [13] A. Ghanadzadeh Gilani, H. Ghanadzadeh Gilani, M. Ansari, J. Chem. Thermodyn. 55 (2012) 203–212.
- [14] A. Ghanadzadeh Gilani, H. Ghanadzadeh Gilani, M. Ansari, N. Ojani, J. Chem. Thermodynamics. 44 (2012) 44–50.
- [15] A. Ghanadzadeh Gilani, H. Ghanadzadeh, Kh. Bahrpaima, A. Ranjkesh, J. Chem. Thermodynamics. 42 (2010) 967–972.
- [16] L.S. Gabrielyan, S.A. Markarian, J. Mol. Liq. 162 (2011) 135–140.
- [17] Edward Zorębski, Marzena Dzida, J. Chem. Thermodyn. 54 (2012) 100-107.
- [18] Qian Jie, Jia Guo-Zhu, J. Phys. Chem. A 117 (2013) 12983–12989.
- [19] Jia Guo-Zhu, Qian Jie, Fluid Phase Equillib. 365 (2014) 5–10.
- [20] C.V. Maridevarmath, G.H. Malimath, J. Mol. Liq. 241 (2017) 845-851.
- [21] J. Cardona, M.B. Sweatman, L. Lue, J. Phys. Chem. B 122 (2018) 1505–1515.
- [22] P. Petong, R. Pottel, U. Kaatze, J. Phys. Chem. A 103 (31) (1999) 6114–6121.
- [23] T. Vishwam, V.R.K. Murthy, J. Mol.Struct. 1035 (2013) 46–53.
- [24] S. Sreehari Sastry, S. Babu, T. Vishwam, S.T. Ha, J. Chem. Thermodyn. 68 (2014) 183–192.
- [25] T. Vishwam, M. Chitra, V. Subramanian, V.R.K. Murthy, Mol. Phys. 105 (2007) 2411–2417.
- [26] M. Stockhausen, H. Busch, Phys.Chem.Liq. 32 (3) (1996) 183–189.
- [27] V.V. Navarkhele, M.K. Bhanarkar, Phys. Chem. Liq. 50 (3) (2012) 378–388.
- [28] A.R. Deshmukh, R.V. Shinde, S.A. Ingole, A.W. Pathan, M.P. Lokhande, A.V. Sarode,
- A.C. Kumbharkhane, Indian J. Pure Appl. Phys. 56 (2018) 346–352.[29] D.D. Perrin, W.L.F. Armarego, Purification of Lab Chem, third ed Pergamon Press, Ox-
- ford, 1980.
- [30] S. Sreehari Sastry, Babu Shaik, T. Vishwam, Sie Tiong Ha, Phys. Chem. Liq. 52 (2) (2014) 272–286.
- [31] R. Minami, K. Itoh, H. Takahashi, K. Higasi, J. Chem. Phys. 73 (1980) 3396-3397.
- [32] U. Kaatze, Metrologia 47 (2010) S91–S113.
- [33] F. Kremer, A. Schonhals, Broadband Dielectric Spectroscopy, Springer, Berlin, 2003.
- [34] Y.Z. Wei, S. Sridhar, Rev. Sci. Instrum. 60 (1989) 3041–3046.
 - [35] L. Mohammadi, A. Omrani, J. Therm. Anal. Calorim. 131 (2018) 1527–1543.
 - [36] Leila Mohammadi, Abdollah Omrani, J. Mol. Liq. 241 (2017) 163–172.
 - [37] Akl M. Awwad, Amar H. Al-Dujaili, Hameda E. Salman, J. Chem. Eng. Data 47 (3) (2002) 421–424.

- [38] X. Yue, I. Zhao, L. Ma, H. Shi, T. Yang, J. Zhang, J. Mol. Liq. 263 (2018) 40–48.
 [39] W.E. Acree Jr., F. Martínez, J. Mol. Liq. 272 (2018) 237–238.
- [40] H. Iloukhani, M. Almasi, Thermochim. Acta 495 (2009) 139-148.
- [41] J. Shaik, M. Gowri Sankar, D. Ramachandran, C. Rambabu, J. Solut. Chem. 43 (2014) 2067-2100.
- [42] J.C.R. Reis, I.M.S. Lampreia, A.F.S. Santos, M.L.C.J. Moita, G. Douheret, Chem Phys Chem. 11 (2010) 3722-3733.
- [43] T. Vishwam, S. Shihab, V.R.K. Murthy, H. Sie Tiong, S.S. Sastry, Spectrochim. Acta, Part A. 179 (2017) 74-82.
- [44] T. Vishwam, K. Parvateesam, S. Sreehari Sastry, V.R.K. Murthy, Spectrochim. Acta, Part A. 114 (2013) 520-530.
- [45] O. Redlich, A.T. Kister, Ind. Eng.Chem. 40 (1948) 345–348.
- [46] R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1994.
- [47] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
 [48] C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
- [49] C.M. Kinart, M. Maj, A. Bald, Z. Kinart, J. Mol. Liq. 16 (2012) 87–94.
 [50] S.M. Nayeem, M. Kondaiah, K. Sreekanth, M. Srinivasa Reddy, D. Krishna Rao, J. Therm. Anal. Calorim. 123 (3) (2016) 2241-2255.
- [51] Meysam Hemmat, Mehrdad Moosavi, Abbas Ali Rostami, J. Mol. Liq. 225 (2017) 107-117

- [52] U. Domańska, Z. Żołek-Tryznowska, J. Chem. Thermodyn. 42 (2010) 651-658.
- [53] Colette Moreau, Gérard Douhéret, J. Chem. Thermodyn. 8 (1976) 403–410.
- P. Bordewijk, Physica 69 (2) (1973) 422-432. [54]
- S. Havriliak, S. Negami, Polymer 8 (1967) 161–210. 1551
- Kenneth S. Cole, Robert H. Cole, J. Chem. Phys. 9 (1941) 341–351. [56]
- [57] D.W. Davidson, R.H. Cole, J. Chem. Phys. 18 (1950) 1417.
- [58]
- D.w. Davidson, Ref. Cole, J. Cheff, Phys. 16 (1950) 1417.
 T.P. Iglesias, Joao Carlos R. Reis, J. Mol. Liq. 264 (2018) 143–149.
 Guo-Zhu Jia, Qian Jie, Wang Feng, J. Mol. Struct. 1100 (2015) 354–358.
 B.B. Swain, Curr. Sci. 54 (1985) 504–506.
 Henry Eyring, J. Chem. Phys. 3 (1935) 107–115. [59]
- 1001 . [61]
- [62] R. Varadarajan, A. Rajagopal, Indian J. Pure Appl. Phys. 36 (1998) 119–124.
 [63] B.B. Swain, Curr. Sci. 54 (1985) 504–506.

- [64] G. Debecker, P. Huyskens, J. Chem. Phys. 68 (1971) 287–300.
 [65] J. Shobhanadri, V. Satheesh, M. Jayaraj, J. Mol. Liq. 64 (1995) 247–261.
 [66] J.A. Reddick, W.B. Bunger, T.K. Sanco, Organic Solvents, Wiley, Newyork, 1986.
 [67] Sanjay M. Puranik, Ashok C. Kumbharkhane, Suresh C. Mehrotra, J. Chem. Soc. Faraday Trans. 88 (1992) 433-435.
- [68] J.G. Baragi, M.I. Aralaguppi, T.M. Aminabhavi, M.Y. Kariduraganavar, A.S. Kittur, J. Chem. Eng. Data 50 (2005) 910-916.